Răspuns :
In ΔABC , m (∡A) = 90° ⇒ AB² + AC² = BC² , 15² + 20² = BC² , 225 + 400 = BC² , BC² = 625 , BC =√625 = 25 cm .
Fie D∈(BC) ⇒AD ⊥ BC
d(M,BC) = MD
In ΔABC , m(∡A) = 90° , AD-inaltime ⇒AD=AC·AB supra BC , AD = 20·15 supra 25 = 300 supra 25 = 12 cm .
In ΔMAD , m(∡A) = 90° ⇒ AM²+AD²=MD² , (12√3)² + 12² = MD² , 432 + 144 = MD² , MD² = 576 , MD = √576 = 24 cm .
Fie D∈(BC) ⇒AD ⊥ BC
d(M,BC) = MD
In ΔABC , m(∡A) = 90° , AD-inaltime ⇒AD=AC·AB supra BC , AD = 20·15 supra 25 = 300 supra 25 = 12 cm .
In ΔMAD , m(∡A) = 90° ⇒ AM²+AD²=MD² , (12√3)² + 12² = MD² , 432 + 144 = MD² , MD² = 576 , MD = √576 = 24 cm .
Vă mulțumim că ați ales să vizitați platforma noastră dedicată Matematică. Sperăm că informațiile prezentate v-au fost utile. Dacă aveți întrebări suplimentare sau aveți nevoie de ajutor, nu ezitați să ne contactați. Vă așteptăm cu drag data viitoare și vă încurajăm să ne salvați în lista de favorite!