f' (x ) = 1 - e/x = ( x -e ) /x cu rad f '=0 ; x=e
x 0 e +∞
------------------------------------------------------
f ' - - 0 + + +
-------------------------------------------------------
f ↓ pct ↑
min ( e , 0)
b. lim = 0/0 = lim ( x² - xelnx ) ' / ( x -e ) ' = lim ( 2x -elnx - e) / 1 =
= 2e -2e =0 ( l'Hospital)