👤

Aflati valorile reale x pentru care 3x pe 16 = 1 pe 27x.

Aflati valorile reale a si b pentru care este adevarata egalitatea:
(radical din 8 - a) la a doua + (b+3) la a doua =0



Răspuns :

a. 3x · 27x = 16
81x² =16  ;   81x² -4²=0     ; ( 9x -4)· ( 9x +4) =0  
                                        9x -4 =0  ⇒   x =  4/9 
                                        9x + 4 =0  ⇒  x = -4/9
b . √( 8-a)² + ( b+3 )² =0 
cu a , b∈ R                       √(8-a)² = I 8 -aI 
I 8-aI  + ( b +3)² =0      suma de numere pozitive este nula daca :
   ↓             ↓
I8-a I =0     si b+3 =0    ⇒ b =-3 
 ↓
8 -a =0 ⇒  a =8 

[tex] \frac{3x}{16} = \frac{1}{27x} \\ x^{2} = \frac{16}{81} \\ x=\pm \frac{4}{9} [/tex]
b) O suma de numere nenegative este 0 daca toti termenii sunt simultan 0
deci a=[tex]2 \sqrt{2} [/tex] si b=-3