Răspuns :
a) Pe prima linie avem o fractie, pe a doua avem 3 fractii, apoi 5, 7, etc.
Observam ca pe linia x avem 2(x-1)+1 fractii.
Deci pe linia 2009 sunt 2(2009-1)+1=2*2008+1=4017 fractii.
b) Numarul total de fractii va fi:
[tex]S=1+3+5+...+[2(n-1)+1]= \\ = [\frac{2(n-1)+1+1}{2}] ^{2} = \\ =[(n-1)+1] ^{2} = \\ = n^{2} -patrat~perfect[/tex]
Observam ca pe linia x avem 2(x-1)+1 fractii.
Deci pe linia 2009 sunt 2(2009-1)+1=2*2008+1=4017 fractii.
b) Numarul total de fractii va fi:
[tex]S=1+3+5+...+[2(n-1)+1]= \\ = [\frac{2(n-1)+1+1}{2}] ^{2} = \\ =[(n-1)+1] ^{2} = \\ = n^{2} -patrat~perfect[/tex]
Vă mulțumim că ați ales să vizitați platforma noastră dedicată Matematică. Sperăm că informațiile prezentate v-au fost utile. Dacă aveți întrebări suplimentare sau aveți nevoie de ajutor, nu ezitați să ne contactați. Vă așteptăm cu drag data viitoare și vă încurajăm să ne salvați în lista de favorite!