👤



1.Un corp este lansat cu viteza initiala v0,in sus pe un plan inclinat de un unghi α.Coeficientul de frecare corp-plan este μ.Aflati:a)inaltimea h la care ajunge corpul;b)viteza v cu care revina la baza planului inclinat;c)timpul Tu de urcare;d)timpul Tc de coborare. v0=10m/s α=45 grade;μ=0,2


Răspuns :

a)
Conservarea energiei impune:

[tex]\dfrac{mv_0^2}{2}=mgh+F_fd[/tex]

Dar distanta pe care actioneaza forta de frecare se poate scrie in functie de inaltime: 
[tex]d=\dfrac{h}{\sin \alpha}.[/tex]

Iar forta de frecare este [tex]F_f=\mu N=\mu mg\cos\alpha.[/tex]

Inlocuim in ecuatia de mai sus si gasim inaltimea:

[tex]\dfrac{mv_0^2}{2}=mgh+\mu mg\cos\alpha \dfrac{h}{\sin\alpha}\\ \\ \\ h=\dfrac{v_0^2}{2g\left(1+\mu \text{ctg} \alpha}\right)}.[/tex]

b)
Revenind la baza, lucrul mecanic efectuat de forta de frecare se dubleaza.
Aplicand din nou legea conservarii energiei in noua situatie, avem:

[tex]\dfrac{mv_0^2}{2}=2F_fd+\dfrac{mv^2}{2}[/tex]

Folosind datele anterioare, aflam viteza la baza planului:

[tex]mv_0^2=4\mu mgh\ \text{ctg}\alpha+mv^2\\ \\ v=\sqrt{v_0^2-4\mu gh\ \text{ctg}\alpha}.[/tex]

c) 
Aflam acceleratia tangentiala planului aplicand legea a doua:
[tex]G_t-F_f=ma\\ \\ mg\sin\alpha-\mu mg\cos\alpha=ma \\ \\ a=g(\sin\alpha-\mu\cos\alpha ).[/tex]

Stim ca viteza la baza planului este descrisa si de formula:
[tex]v=at_c[/tex]

De aici, aflam timpul:

[tex]t_c=\dfrac{v}{a}.[/tex]
Vă mulțumim că ați ales să vizitați platforma noastră dedicată Fizică. Sperăm că informațiile prezentate v-au fost utile. Dacă aveți întrebări suplimentare sau aveți nevoie de ajutor, nu ezitați să ne contactați. Vă așteptăm cu drag data viitoare și vă încurajăm să ne salvați în lista de favorite!


Ze Questions: Alte intrebari