👤

ABCD este un paralelogram cu m(<BDC) = 30° şi AC perpendicular pe AB. Să se determine aria
paralelogramului ştiind că BD = 1,6 dm.





Răspuns :

Vad ca astepti cam de mult timp.

CO=CD/2 (cateta opusa unghiului de 30 grade este 1/2 din ipotenuza)⇒CA=DC⇒
⇒m(<CDA)=45⇒ΔDCA este dreptunghic isoscel⇒DC=DA/√2 (cu o functie trigonometrica sau cu T. lui Pitagora).

[tex]A_{ABCD}=2\cdot A_{DCA}=2\cdot\dfrac{DC^2}{2}=\dfrac{1,6^2}{2}=\dfrac{2,56}{2}=1,28\ dm^2[/tex]
Vă mulțumim că ați ales să vizitați platforma noastră dedicată Matematică. Sperăm că informațiile prezentate v-au fost utile. Dacă aveți întrebări suplimentare sau aveți nevoie de ajutor, nu ezitați să ne contactați. Vă așteptăm cu drag data viitoare și vă încurajăm să ne salvați în lista de favorite!


Ze Questions: Alte intrebari