👤

Demonstrati ca [tex] \frac {1}{ √1}+ \frac {1}{ √2}+ \frac {1}{ √3}+...+ \frac {1}{ √9999}>99,99.[/tex]

Răspuns :

Notez suma cu S.

[tex] \frac{1}{ \sqrt{1} } > \frac{1}{ \sqrt{10000} } = \frac{1}{100}=0,01 [/tex]
[tex] \frac{1}{ \sqrt{2} } > \frac{1}{ \sqrt{10000} } = \frac{1}{100}=0,01 [/tex]
.........................................................................
[tex] \frac{1}{ \sqrt{9999} } > \frac{1}{ \sqrt{10000}} = \frac{1}{100}=0,01[/tex]
Aduni relatiile...
Si obtii: S>0,01*9999=99,99.