Răspuns :
Presupunem ca numerele NU sunt prime intre ele. Rezulta ca exista un numar d∈N, astfel incat d | 4n+3 si d | 6n+4
d | 4n+3 => d | 3(4n+3), adica d | 12n+9.
d | 6n+4 => d | 2(6n+4), adica d | 12n+8.
Cum d | 12n+9 si d | 12n+8 => d | (12n+9)-(12n+8) =1 .
d | 1 => d=1 => 4n+3 si 6n+4 sunt prime intre ele. (singurul lor divizor comun este 1).
d | 4n+3 => d | 3(4n+3), adica d | 12n+9.
d | 6n+4 => d | 2(6n+4), adica d | 12n+8.
Cum d | 12n+9 si d | 12n+8 => d | (12n+9)-(12n+8) =1 .
d | 1 => d=1 => 4n+3 si 6n+4 sunt prime intre ele. (singurul lor divizor comun este 1).
Vă mulțumim că ați ales să vizitați platforma noastră dedicată Matematică. Sperăm că informațiile prezentate v-au fost utile. Dacă aveți întrebări suplimentare sau aveți nevoie de ajutor, nu ezitați să ne contactați. Vă așteptăm cu drag data viitoare și vă încurajăm să ne salvați în lista de favorite!