👤

VA rog rezolvare completa !!
[tex] \frac{29}{5} [/tex] [tex] x^{2 [/tex]-[tex] \frac{1}{2} [/tex][tex] x^{2} [/tex]+ 2,(3)[tex] x^{2} [/tex]-[tex] \frac{7}{6} [/tex][tex] x^{2} [/tex]+ 2 [tex] \frac{1}{10} [/tex] [tex] x^{2} [/tex]=


Răspuns :

[tex] \frac{29}{5}x^2- \frac{1}{2}x^2+2,(3)x^2- \frac{7}{6}x^2+2 \frac{1}{10}x^2= \frac{58x^2-5x^2}{10} + \frac{23-2}{9}x^2- \frac{7}{6}x^2+ \\ +\frac{2*10+1}{10}x^2= \frac{53x^2}{10} + \frac{21}{9}x^2- \frac{7}{6}x^2+ \frac{21}{10}x^2= \frac{74x^2}{10}+ \frac{42x^2-21x^2}{18}= \frac{74x^2}{10}+ \\+ \frac{21x^2}{18}= \frac{37x^2}{5}+ \frac{7x^2}{6} = \frac{222x^2+35x^2}{30}= \frac{257x^2}{30} [/tex]
=[tex] \frac{29y}{5} [/tex]-[tex] \frac{y}{2} [/tex]+[tex] \frac{7y}{3} [/tex]-[tex] \frac{7y}{6} [/tex]+[tex] \frac{21y}{10} [/tex]=         unde y=x^2

prima, a doua si a patra fractie prin aducere la n.c. si prin simplificare da
 [tex] \frac{37y}{5} [/tex]
a treia fr.si ultima da  [tex] \frac{7y}{6} [/tex]

adunand cele doua fr. obtinute si n.c. vom avea   = [tex] \frac{257y}{30} [/tex]

deci == 257x^2/30