👤

1. a)Determinati elementele multimii A = { x ∈ N|( x + 2) se divide cu 5, x = ab cu bara. }
b) Determinati elementele multimilor:
A = {x|x ∈ N, x = 2k + 3, 1 ≤ k ≤ 5 }  si B = {y|y ∈ N, [tex] 5^{3} [/tex] - 4 ≤ y ≤ [tex] 2^{7} [/tex] - 1}

2. Fie A= { 1,2,3,4...99,100}. Determinati numarul submultimilor B ⊂ a, STIINDA CA {1,2} ⊂ B  ⊂ {1,2,...81}


Răspuns :

Este foarte simplu .Daca avem x+2 divizibil la 5 iar x=ab cu bara⇒ultima cifra a lui x+2=0 sau 5 dupa criteriul de divizibilitate.Deci ultima cifra a lui x este 8 sau 3 deci daca x=ab
b poate avea 2 valori ,iar a poate avea 9 valori,deci sunt 2x9=18 nr ce indeplinesc conditia:
13;18;23;28;33;38;43;48;53;58;63;68;73;78;83;88;93;98
x=2k+3
k=1⇒x=2·1+3=5
k=2⇒x=2·2+3=7
k=3⇒x=3·3+3=12
k=4⇒x=3·4+3=15
k=5⇒x=3·5+3=18
125-4=121
2la a 7=128-1=127
y∈(121;122:123;124;125;126;127
la ultima cred ca e doar o submultime

Vă mulțumim că ați ales să vizitați platforma noastră dedicată Matematică. Sperăm că informațiile prezentate v-au fost utile. Dacă aveți întrebări suplimentare sau aveți nevoie de ajutor, nu ezitați să ne contactați. Vă așteptăm cu drag data viitoare și vă încurajăm să ne salvați în lista de favorite!


Ze Questions: Alte intrebari