Răspuns :
[tex] a_{2+1}= a_{3}= 2 a_{2}- a_{2-2}-2x2+5=2x4-0-4+5=9 [/tex]
[tex] a_{3+1}= a_{4}= 2a_{3}- a_{3-2}-2x3+5=2x9-1-6+5=16[/tex]
[tex] a_{4+1}= a_{5}= 2a_{4}- a_{4-2}-2x4+5=32-4-8+5=25 [/tex]
(si tot asa este valabil pentru orice termen)
[tex]a_{3}=9 ; a_{4}=16 ; a_{5}=25 ; a_{6}=36.[/tex]
(observam ca ori al catelea termen ar fi, termenul va fi egal cu el la puterea a doua)
Inseamna ca [tex] a_{n}=n^{2} [/tex]
[tex]S_{n} = \frac{( a_{1+a_{n} } )n }{2} = \frac{(1+ n^{2} )n}{2} [/tex]
[tex] a_{3+1}= a_{4}= 2a_{3}- a_{3-2}-2x3+5=2x9-1-6+5=16[/tex]
[tex] a_{4+1}= a_{5}= 2a_{4}- a_{4-2}-2x4+5=32-4-8+5=25 [/tex]
(si tot asa este valabil pentru orice termen)
[tex]a_{3}=9 ; a_{4}=16 ; a_{5}=25 ; a_{6}=36.[/tex]
(observam ca ori al catelea termen ar fi, termenul va fi egal cu el la puterea a doua)
Inseamna ca [tex] a_{n}=n^{2} [/tex]
[tex]S_{n} = \frac{( a_{1+a_{n} } )n }{2} = \frac{(1+ n^{2} )n}{2} [/tex]
Vă mulțumim că ați ales să vizitați platforma noastră dedicată Matematică. Sperăm că informațiile prezentate v-au fost utile. Dacă aveți întrebări suplimentare sau aveți nevoie de ajutor, nu ezitați să ne contactați. Vă așteptăm cu drag data viitoare și vă încurajăm să ne salvați în lista de favorite!