Răspuns :
Demonstrăm prin inducție.
Pentru n=1 formula pentru [tex]a_n[/tex] se verifică.
Presupunem că formula este adevărată pentru toți termenii [tex]a_k, \ k=1,2,\ldots,n-1[/tex]
Atunci
[tex]a_n=5a_{n-1}-4a_{n-2}=5\left(4^{n-1}+1\right)-4\left(4^{n-2}+1\right)=\\=5\cdot 4^{n-1}-4^{n-1}+1=4^{n-1}(5-1)+1=4^n+1[/tex]
Deci formula este adevărată și pentru [tex]a_n[/tex]
Pentru n=1 formula pentru [tex]a_n[/tex] se verifică.
Presupunem că formula este adevărată pentru toți termenii [tex]a_k, \ k=1,2,\ldots,n-1[/tex]
Atunci
[tex]a_n=5a_{n-1}-4a_{n-2}=5\left(4^{n-1}+1\right)-4\left(4^{n-2}+1\right)=\\=5\cdot 4^{n-1}-4^{n-1}+1=4^{n-1}(5-1)+1=4^n+1[/tex]
Deci formula este adevărată și pentru [tex]a_n[/tex]
Ecuatia caracteristica este [tex]r^2=5r-4[/tex] cu solutiile 4 si 1.
[tex]a_n=c_1 \cdot 4^n+c_2 \cdot 1^n\\ a_1=4c_1+c_2=5\\ a_2=16c_1+c_2=17\\ c_1=1;c_2=1 \\a_n=1 \cdot 4^n+1 \cdot 1^n=4^n+1\\ a_n=4^n+1[/tex]
[tex]a_n=c_1 \cdot 4^n+c_2 \cdot 1^n\\ a_1=4c_1+c_2=5\\ a_2=16c_1+c_2=17\\ c_1=1;c_2=1 \\a_n=1 \cdot 4^n+1 \cdot 1^n=4^n+1\\ a_n=4^n+1[/tex]
Vă mulțumim că ați ales să vizitați platforma noastră dedicată Matematică. Sperăm că informațiile prezentate v-au fost utile. Dacă aveți întrebări suplimentare sau aveți nevoie de ajutor, nu ezitați să ne contactați. Vă așteptăm cu drag data viitoare și vă încurajăm să ne salvați în lista de favorite!