Răspuns :
√x-1= 7 .
atunci x-1=49 , pentru că numai √49=7 .
aşadar x-1=49 ,
x=49+1
x=50 .
atunci x-1=49 , pentru că numai √49=7 .
aşadar x-1=49 ,
x=49+1
x=50 .
Există două cazuri:
a)[tex] \sqrt{x-1} [/tex]= 7, și avem x-1=49, adică x= 50
și cazul
b)[tex] \sqrt{x} -1[/tex]=7, deci √x= 8... de unde e evident că x= 64.
Așadar avem două soluții, x ∈(50 și 64)
a)[tex] \sqrt{x-1} [/tex]= 7, și avem x-1=49, adică x= 50
și cazul
b)[tex] \sqrt{x} -1[/tex]=7, deci √x= 8... de unde e evident că x= 64.
Așadar avem două soluții, x ∈(50 și 64)
Vă mulțumim că ați ales să vizitați platforma noastră dedicată Matematică. Sperăm că informațiile prezentate v-au fost utile. Dacă aveți întrebări suplimentare sau aveți nevoie de ajutor, nu ezitați să ne contactați. Vă așteptăm cu drag data viitoare și vă încurajăm să ne salvați în lista de favorite!