Răspuns :
a)
[tex]E(x) = (\frac{x-1}{x-2} - \frac{x-2}{x-1})\frac{x^{2}-3x+2}{2x^{2}-3x}[/tex]
Intai fractia din afara:
[tex]\frac{x^{2}-3x+2}{2x^{2}-3x} = \frac{x^{2}-2x-x+2}{2x^{2}-3x} = \frac{x(x-2) - (x-2)}{x(2x-3)}[/tex]
[tex]\frac{x(x-2) - (x-2)}{x(2x-3)} = \frac{(x-2)(x-1)}{x(2x-3)}[/tex]
Acum paranteza principala:
[tex]\frac{x-1}{x-2} - \frac{x-2}{x-1} = \frac{(x-1)^{2}-(x-2)^{2}}{(x-1)(x-2)}[/tex]
[tex]\frac{(x-1)^{2}-(x-2)^{2}}{(x-1)(x-2)} = \frac{(x^{2}-2x+1)-(x^{2}-4x+4)}{(x-1)(x-2)} = \frac{2x - 3}{(x-1)(x-2)}[/tex]
Rescriem:
[tex]E(x) = \frac{2x - 3}{(x-1)(x-2)} \frac{(x-2)(x-1)}{x(2x-3)} = \frac{1}{x}[/tex]
b)
Ca 1/x sa fie un numar intreg, x trebuie sa apartina divizoriilor lui 1.
Divizorii lui 1 sunt : D1 = { -1; 1 }
Deci, solutiile sunt:
[tex]x_1 = -1[/tex] si [tex]x_2 = 1[/tex]
Mult noroc
Mexic
[tex]E(x) = (\frac{x-1}{x-2} - \frac{x-2}{x-1})\frac{x^{2}-3x+2}{2x^{2}-3x}[/tex]
Intai fractia din afara:
[tex]\frac{x^{2}-3x+2}{2x^{2}-3x} = \frac{x^{2}-2x-x+2}{2x^{2}-3x} = \frac{x(x-2) - (x-2)}{x(2x-3)}[/tex]
[tex]\frac{x(x-2) - (x-2)}{x(2x-3)} = \frac{(x-2)(x-1)}{x(2x-3)}[/tex]
Acum paranteza principala:
[tex]\frac{x-1}{x-2} - \frac{x-2}{x-1} = \frac{(x-1)^{2}-(x-2)^{2}}{(x-1)(x-2)}[/tex]
[tex]\frac{(x-1)^{2}-(x-2)^{2}}{(x-1)(x-2)} = \frac{(x^{2}-2x+1)-(x^{2}-4x+4)}{(x-1)(x-2)} = \frac{2x - 3}{(x-1)(x-2)}[/tex]
Rescriem:
[tex]E(x) = \frac{2x - 3}{(x-1)(x-2)} \frac{(x-2)(x-1)}{x(2x-3)} = \frac{1}{x}[/tex]
b)
Ca 1/x sa fie un numar intreg, x trebuie sa apartina divizoriilor lui 1.
Divizorii lui 1 sunt : D1 = { -1; 1 }
Deci, solutiile sunt:
[tex]x_1 = -1[/tex] si [tex]x_2 = 1[/tex]
Mult noroc
Mexic
Vă mulțumim că ați ales să vizitați platforma noastră dedicată Matematică. Sperăm că informațiile prezentate v-au fost utile. Dacă aveți întrebări suplimentare sau aveți nevoie de ajutor, nu ezitați să ne contactați. Vă așteptăm cu drag data viitoare și vă încurajăm să ne salvați în lista de favorite!