👤

1.Daca a=7,(235) atunci zecimala de pe locul 2011 este.....?
2. Rezultatul calculului 
[tex]5^{-1}+2^{-1}+( \sqrt{3)} ^{-2}[/tex] este egal cu ... 
3.Se considera a=[tex] \sqrt{6}- \sqrt{3} [/tex] si b=[tex] \sqrt{6}+ \sqrt{3} .Aratati ca \frac{4}{3}< \frac{1}{a}+ \frac{1}{b} < \frac{5}{3}.[/tex]


Răspuns :

1.)2011:3=670 rest 1=>deoarece restul este 1 insem ca zecimala de pe locul 2011 este de fapt zecimala de pe 1 loc adica 2
2.)1/5+1/2+1/3=(6+15+10)/30=31/30
3.)1/a=1/radical 6+radical3=(radical 6+radical3)/3
analog :1/b=(radical 6-radical 3)/3
din astea rezulta ca 1/a+1/b=2 radical 6/3
4<2 radical 6<5(numitorul 3 a disparut pt ca era peste tot)
rad 6=2.44=>2rad 6=4.88=>4<4.88<5