[tex]\displaystyle \frac{n^2+n+2012}{n^4-n^2 +2014}= \\ \\
=\frac{n(n+1)+2012}{n^2(n^2-1) +2014} \\ \\ unde: \\ n(n+1) =produs ~numere~ consecutive \\
n^2(n^2-1) = produs~ de ~numere ~consecutive. \\
\text{Un produs de numere consecutive este par} \\ \\
\Longrightarrow \frac{n(n+1)+2012}{n^2(n^2-1) +2014} ~~~\text{Are numaratorul su numitorul, numere pare} \\ \\ \Longrightarrow \frac{n(n+1)+2012}{n^2(n^2-1) +2014} ~~~\text{se poate simplifica cu 2}
[/tex]
[tex]\displaystyle \Longrightarrow \boxed{\frac{n^2+n+2012}{n^4-n^2 +2014}~~~Este~ reductibila.}[/tex]