👤

Calculati suma:
[tex] 2^{1} + 2^2+2^3+...+2^{2014}=[/tex]


Răspuns :

[tex]S=2^1+2^2+...+2^{2014}[/tex]


Inmultim cu 2

[tex]2S=2^2+2^3+2^4+...+2^{2015}[/tex]

Calculam [tex]2S-S=2^2+2^3+2^4+....+2^{2015}-2^1-2^2-2^3-...-2^{2014}[/tex]

[tex]S=2^{2015}-2=2(2^{2014}-1)[/tex]
Suma este o progresie geometrica.
Mai intai calculam ratia:  q=2²:2=2    => q=2
Apoi suma dupa formula:
S= b_{1} * \frac{q^n-1}{q-1} 

S=2* \frac{2^{2014}-1 }{2-1} =
=2*(2^{2014}-1)=2^{2015} -2
Vă mulțumim că ați ales să vizitați platforma noastră dedicată Matematică. Sperăm că informațiile prezentate v-au fost utile. Dacă aveți întrebări suplimentare sau aveți nevoie de ajutor, nu ezitați să ne contactați. Vă așteptăm cu drag data viitoare și vă încurajăm să ne salvați în lista de favorite!


Ze Questions: Alte intrebari