( x +10 ) ! / ( x -4) ! · ( x +10 - x +4 ) ! = ( x +10 )! / ( 2x -10 )! ·( x +10 -2x +10 )!
( x +10 )! / ( x -4) ! · 14! = ( x +10 ) ! / ( 2x -10 )! · ( 20 -x ) !
14! · ( x -4 ) ! = ( 2x -10 ) ! · ( 20 - x ) !
conditie x +10 ≥ 2x -10
din x ≤ 20
se verifica x =6 din 14 = 20 -x ; 14 ! · 2! = 2! · 14!
14= 2x -10 ; x =12
se cere C ²₆ = 15 si C ₁₂² = 66
301 . n! · ( n + 4 ) ! / n ! < 143 · ( n +2 ) !
( n +2 ) ! · ( n +3 ) · ( n +4) < 143 ·( n +2) !
numere consecutive ( n +3 ) ·( n +4 ) < 143
n ∈ N = { 0 ,1,2,3 .... }
143 = 11 ·13
n +3 =11 ; n =8
n ∈ { 0,1,2,3,4,5,6,7,8}