Răspuns :
[tex]S=(1+2+3)+4+5+...+100-(1+2+3)= \\ \\ ~~~=1+2+3+4+5+...+100-6= \\ \\ ~~~= \frac{100 \cdot 101}{2} -6= \\ \\ ~~~= 50 \cdot 101-6= \\ \\ ~~~=5050-6= \\ \\ ~~~=5044.[/tex]
putem face un arfificiu pentru a aplica Gauss
1+2+3+4+5+6+7+..+100 - (1+2+3)
si o sa avem
100*101/2-6=
50*101-6=
5050-6=5044
1+2+3+4+5+6+7+..+100 - (1+2+3)
si o sa avem
100*101/2-6=
50*101-6=
5050-6=5044
Vă mulțumim că ați ales să vizitați platforma noastră dedicată Matematică. Sperăm că informațiile prezentate v-au fost utile. Dacă aveți întrebări suplimentare sau aveți nevoie de ajutor, nu ezitați să ne contactați. Vă așteptăm cu drag data viitoare și vă încurajăm să ne salvați în lista de favorite!